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THE STABILITY AND STABILIZATION OF THE EQUILIBRIUM POSITIONS 

OF NON-HOLONOMI~ SYSTEMS* 

A.YA. KRASINSKII 

The stability and the possibility of stabilizing in the linear approxi- 
mation the equilibrium positions of non-holonomic systems axe studied. 
The number of roots of the characteristic equation on the imaginary axis 
in the neighbourhood of the equilibrium is greater than the number of 
non-integrable connections. Some of these roots may be pure imaginary. 
The state of the system is described by Routh variables ,/I, 2/. The 
control forces are assumed to be dependent on the momenta, the Lagrange 
coordinates, and their velocities. 

Questions of the stability and stabilization of the stationary 
motions of mechanical systems were considered in /3-8/. The stabilizing 
forces were applied with respect to the cyclical coordinates. This 
method is developed in the present paper. The coordinates corresponding 
to momenta are not in general assumed to be cyclical and are not ignored. 
Sufficient conditions for stability are obtained by means of Lyapunov 
fP/, Malkin /lo/, and Kamenkov ill/' theorems on stability in singular 
(essentially singular) cases. By using Routh variables, the initial 
structure of the forces can be preserved. 

1. We consider a scleronomous non-holonomic system whose position is defined by the 
generalized coordinates ql, . . . . &,, while the generalized velocities q,', . . ..qn' are connected 
by the m non-integrable relations 

% * = &I, (41%' (1.1) 
Here and throughout, i, j, k = 1, 2, . . . . n; p,s = 1, 2, . . . . n-mm; I*, 0 = n - m -F 1, . . ., n; 5, 

q = 1,2 . . . *, I;x, 6 = I+ I,... .,n - m. Summation is performed over twice repeated subscripts. 
Let T(') = '/~~'(~)qi'q~ be the kinetic energy, and n(q) the potential energy, of the 

system. We assume that not only potential forces but also non-potential forces y0 (9, 4')r 
referred to the coordinates q,,acton the system. We also assume that, in an open domain of 
phase space, the coefficients in the expression for the kinetic energy a{!'(q), the coefficients 

in the equations of the connections B,(q), and the potential energy II(q), are at least 
twice continuously differentiable with respect to qf, and the generalized forces I'O(~,~‘) are 
continuous differentiable with respect to qi, qr’, the kinetic energy being a positivedefinite 
function of the velocities. 

We shall study the stability of the equilibrium positions of a non-holonomic system with 
connections (1.1) with respect to all coordinates and independent velocities. Though this 
problem has often been studied /12/, most results to the stability of equilibrium positions 
in the neighbourhood of which only roots of the characteristic equation of the first approxi- 
mation of the system lie on the imaginary axis. If, apart from the m zero roots, all the 
remaining roots lie in the left half-plane, we have the singular case of m zero roots /13/. 
Reduction to a singular case with a given disposition of the roots is then possible whatever 
the dependence of the equations of the disturbed motion on the critical variables. 

In the problems treated here, when there are more roots of the characteristic equation 
on the imaginary axis than there are constraints, the use of reduction theory is much more 
difficult. First, the replacement of /13/ is no longer sufficient to determine to which 
variables or combinations of them the roots of the characteristic equation with zero real 
parts correspond, i.e., in general, to isolate the critical variables, certain linear trans- 
formations of the variables are needed. Second, both singular and non-singular critical cases 
are possible in such problems, It is thus more difficult to analyse the dependence of the 
equations of the disturbed motion on the critical variables. 

Sufficient conditions for stability and instability have been obtained in some of these 
more difficult problems on the stability ofequilibriumpositions**(**A.Ya. Krasinskii, On the 
influence of the structure of forces on the stability of the equilibrium states of non- 
holonomic systems in some critical cases, Tashkent, Dep. at VINITI 30.07.80, 27.07-80. 1979.). 
*Pr~kl.Hatem.Mekhan.,52,2,194-202,1988 

152 



153 

However, the use of Lagrange variables to describe the states of a system led to laborious 
transformations, which in general change the initial structure of the forces even at the stage 
of isolating the critical variables. In this connection it is extremely useful to employ 
Routh variables, which often enable us to obtain directly the so-called critical form /lo, ll/ 
of the equations of the disturbedmotion, due to the fact that the equationsforthe Hamiltonian 
variables are solvable for the derivatives. 

To describe the motion of the system, we use below the Voronets equations in Routh 
variables. To write these equations, we introduce the vectors and matrices 

9' = (Q1,. . ., PA r’ = (Pll. * .1 4n-m)7 .s’ = &milt. ’ .t Q”) 
a’ = (a,. . .1 ah 0’ = b+lr. . ., srmft A, = II & (4 II 
A,, = II & (4) II, A,, = II& (qf II, As = II & (41 II 
A,, = II ti; (q) II, A, = II a:: (4 IL &w = Am 
Y(l) = (Y, (q, P’),. * ., y1 (9, 9’)h Y@) = (Y&u (q, 479. . * 

yn-?n (% Q’)) 

& = II 4iE 62‘) //I 43 = II 44x (9) il, a b7) = ;:, ;f 
I R 

a, = A, + A,&. + &‘A,, + &‘A,&‘, ~21 = an’ 
U - A,, + A,,& + %‘A,, + Ba’Aab 18 - 

Ut = A 2 + A &B + &‘A $2 + &‘A ,B, 

(the prime denotes transposition), The division of the vector r into vectors CL and p in a 
specific system depends on the nature of the dependence on these variables of 
the potential energy, the generalized forces, the matrix of coefficients in the equations of 
the constraints, and possibly also of the matrix of coefficients of the kinetic energy. Since 
the equations are at once written in the general case, the division of I into vectors a and fi 
is as yet arbitrary. 

We introduce the momenta p = aTi@‘, where T = 1/2r”u (q)r’ is the kinetic energy of the 
system, expressed in terms of the independent velocities. We write the Voronets equations in 
Routh variables in the vector-matrix form 

(f.2) 

Here, 

&is the v-th column of the matrix B(q), and Wlp) and W&l ,denote respectively for 
any matrix W(q) = 11~~ (qf II the “vectors” with matrix components II dwd@r IL II dwij/& II, where v is 
the number of the "vector" component. 

2. We consider the stability of a point of the manifold of equilibrium postions 

-$-+8’(q)$+ Y(q,O,O)=O (2.1) 

We assume here without loss of generality /12/ that the equilibrium position under in- 
vestigation is the origin 

q=o (2.2) 

For any matrix W(q) we introduce the representation 
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u' ((I) .--. UI" + W", 'IV" = IV (0). 

Here and below, the superscript after the asterisk denotes the order of the lowest terms 
in the expansion of the relevant expression. In Eqs.il.2) we make the replacement of /13/, 
which in our notation takes the form 

s = z + B,“a f RR’@ (2.3) 

and we isolate the linear approximation. We have 

a' = a,, a*%, =- y"JI' - (c,* + P,)cr - P,$ - z,z + 91 + (2.4) 
R, g = --yO’al + b2’p + N 

Here, Q1, Qa are the linear terms in the expansions of the vectors y@)(q, a,,~), YP)(q, C(~, 
p) respectively, while the meaning of the other notation is as follows: 

R = M + a*Ob” I-y’p’ - (Cl* + P,) a - PI& - Z,z i_ Q, + I’@ 

M = - (a,,‘%, + al,ob~l) p - II=‘* - BaIlgr* - [f&a + C& -j- 

C&z + &“a + &“B)l I&w + Rw)B + &w(z + B,“a + Re”P)f + 

Y(l)‘* - ‘jza,‘af,)a, - (- y’a, + b,p)’ a(*R)xI - 

I(& - BBY’) a, + b,pl’ YWP - ‘&l’bm)p -t- 0% + 

lIz%‘~@,~ + llzal’&&~l - 112p’bzdGp 

b (d = (a* (W, A’ -= - (a,,“b, + a,;b2”) cc1 + b,“p 

K = 1/2a,‘a&p, + a,'a&p - l/~p~b~~~~p - II,‘* - B$I,‘2 - 

lCsta + W + Cs (2 -t &“a + ho!% [%)a + RR(B$ f 

BPW (2 + &“a -I- &T)I + Y@)*z -I- lbz~l’&Bgal + 

a;WGp - ‘ltp’bzdGp -t e’% 

Disregarding the terms that arise in the expansion of the vectors Q,,Qs in the phase 
variables, the characteristic equation of the first approximation of system (2.4) can be 
written as 

E$. -El 0 0 0 
c,*+pl a*?" P,, y% z, 

0 Y 
0, EJ -b,' 0 =O 

P 81 0 C,*+Pa * Et?+ Z, 
0 0 0 0 E,h 

(2.5) 

Corresponding to the variable z, we have m zero roots of this equation. On studying the 
remaining xoots, and also, in the case of extra roots with zero real parts and the absence of 
roots in the right half-plane, the nature of the dependence of the equations of motion on the 
critical variables, we can obtain some assertions about the stability of the equilibrium 
positions. 

Note 1. We have mentioned that, if the number of roots of Eq.(2.5) on the imaginary axis 
is greater than the number of non-integrable constraints, then both singular and non-singular 
critical cases of several zero and pure imaginary roots are possible. We will confine our- 
selves here to assertions when, first, the question is solved by reduction of the cases in 
question to singular cases,and second , when the statements can be made in a similar way to 
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Thomson-Thet-Chetayev theorems and can be proved by means of well-known results /14/ on the 
influence of the structure of forces on the stability of motion. It is therefore natural to 
impose conditions of the equation type, which in general will not be the necessary conditions 
for stability, since their appearance is due to the critical cases considered here, and to the 
fact that, to date, no effective sufficient conditions have been obtained for the stability 
of systems with linear non-potential positional forces. 

3. Assume that potential forces with energy n(q) act on the non-holonomic system, 
together with non-potential generalized forces, such that Yfq, 0)= 0. Then, the vectors of 
the linear non-potential forces are Q1 =- Ql,al - Qlzp, Q9 =-Qelal - Qn2p, where QllrQ,2, QS1 QPZ 
are constant matrices of suitable dimensionalities. 

We will consider some cases of instability and stability of the equilibrium positions, in 
the neighbourhood of which the number of zero roots of l?.q.(Z.S) is greater than the number m 
of constraints. 

Assertionl. Letthequadraticpartof the potential energy be independent of the coordinates 
& the constraints being such that we have 

Be" = 0, B&j) = 0, &a = 0 (3.4) 

The equilibrium position (2.2) is unstable if 

(3.2) 

Proof. Under these conditions, m+t zero roots of Eq.(2.5) correspond to the variables 

i% 2, while the remaining roots are found from an equation whose unattached term is equal to 
the determinant (3.2). 

Corollary 1. If linear forces in the velocities 3' as well as linear positional forces 
in fi, arenot present in the system, then the point (2.2) is unstable if 

detll C,* -t- P, - V,,U < 0 (3.3) 

Now, m-i-2: zero roots of the characteristic Eq.(2.4) correspond to the variables B, P. a. 
The determinant (3.3) is equal to the unattached term of the equation from which the remaining 
roots are found. We see that, for systems in which positional forces, linear in part of the 
coordinates, are not present, the question of stability with respect to the first approximation 
depends, not only on the positional generalized forces which are linear in the other 
coordinates, but also on the matrices of coefficients of the forces, linear in the velocities, 
and on the matrix of coefficients of the kinetic energy. 

Assertion 2. Let the following conditions hold in the neighbourhood of the point (2.2): 
a) the potential energy is independent of the coordinates 8, while the velocitiesofthese 

coordinates do not enter into the equations of constraints; 
b) the acting forces and the matrix B(q) are such that linear generalized forces are not 

present in the matrices P, and Qsl. 
If the matrix C,* and the symmetric component matrices Qll,Q2* are positive definite, 

then the equilibrium position (2.2) is asymptotically stable with respect to the velocities 
and stable with respect to the coordinates under the action of linear generalized forces with 
any matrices Z,, Qlz and any skew-symmetric component matrices Qll,Qez. 

Proof. Corresponding to the variables b, z we have m f t zero roots of Eq.(2.5), while 
the real parts of the remaining roots are negative /14/. To reduce the problem to the singular 
case of m+t zero roots, it is in general sufficient to make a Lyapunov-type replacement 
in the coordinates a. The system here has an (m+t)-p arametric manifold of equilibrium 
positions, which, under our conditions, in asymptotically stable. 

Note 2. Condition a) of Assertion 2 is satisfied, in particular, if the coordinates fi 
are cyclical in the sense of /15, 16,'. Vanishing of the matrix P, implies the absence of 
non-potential positional linear forces in the coordinates OL, which is always the caseifthere 
are no terms linear in s in the potential energy, and if the vector a is one-dimensional, 
i.e., is a scalar. 

Note 3. If the second equation of system (2.4) contains no free variables s, the re- 

placement in coordinates a becomes unnecessary and the asymptotic stability is retained in 
these variables. 

We can similarly obtain: 

Assertion 3. Let the following conditions hold: 
a) the potential energy is independent of 0, while the potential forces contain no free 

coordinates s; 
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b) the velocities a' do not enter into the equations of the constraints, and furthermore, 

B, (4)la=o = 0. 
If the acting forces are such that, in the neighbourhood of point (2.2), the matrix C, 

and the symmetric component matrices Q11. Qz, are positive definite and linear forces with 
matrices P,,, Qz, are not present, then the point (2.2) is asymptotically stable with 
respect to the velocities and the coordinates a, and stable with respect to coordinates P? s 
under the action of linear forces with any matrix Q,, and any skew-symmetric component 
matrices Q11,Qz2_ 

Note 4. In the conditions imposed, there only remains in the matrix P,, the term 0 
L'%(CZP which vanishes in particular if there are no terms linear in s in the expression for 

the energy H (9). Notice also that, in this assertion, the conditions of the Lyapunov-Malkin 
theorem are immediately satisfied in the initial variables. 

Example . We consider an inhomogeneous sphere, mass m, radius R, whose central ellipsoid 
of inertia is an ellipsoid of revolution, while the centre of mass is not the same as the 
geometric centre of the sphere, and the axis of dynamic symmetry passes through the geometric 
centre of the sphere. The stability of the equilibrium of this sphere on a horizontal rough 
plane was considered in /17/. Here we shall study the stability of the equilibrium positions 
when the sphere touches and turns on a rough plane inclined at an angle 6 to the horizontal. 
The state of the system is given by five generalized coordinates: the Cartesian coordinates 

5, Y of the point of contact of the sphere with the plane, the Rezal angles 0,$, and the 
angle 'p of rotation about the axis of dynamic symmetry. The z axis is parallel to the 
horizontal, and the y axis is upwards from the inclined plane. 

The Lagrange function, formed without allowing for the constraints, and the equations of 
the constraints, are 

L = V,m (.x'~ + ~'9 + ml [z' (@'sin+ sin 0 - 9' cos$ co9 f3) + 
8'Y' cos 81 + Vz (A + mP) (O'* + IQ's ~0~~8) + VpC (cp’ - 9’ sin e)n - 
mg [y sin 6 + (R - 2 em e cos 9) em 6 + 2 sin e sin 61 

Z' = R+’ - R sin tlcp’, y’ = -R cos qe. - R sin * cos ev’ 

Here, I is the distance of the sphere centre from the centre of mass, A is the axial 
moment of inertia, C is the central equatorial moment of inertia, and g is the acceleration 
due to gravity. We can obviously assume that 0<6<ni2. 

In addition to gravity forces, let the sphere be acted on by dissipative forces with the 
energy dissipation function /17/ 

F = Vz [h,Rve (~‘3 + ~‘2) + h, (cp’ cm $J cos 0 - El’ sin 1#)2] 

where h,. h, are respectively the coefficients of viscous friction of rolling and rotation. 
The manifold of equilibrium positions is given by 

8' = arcsin (RF sin 6) - 6, $8 = 0 (3.4) 

since, with 8= n/2, there is in general no equilibrium. Equilibria are possible only when 
RZ-‘sin8<1. Denoting by B the deviation from tJ*, and introducing the vectors qp = (e,*, 'P, Z, 
y), B = cp, 0~' = (e, pi), 8’ = (5, Y). we find that the determinant (3.2) is equal to 

m-1 ~0s (e* + 6) gv ~0s e* (sin e* h,d + h, cos e*) (3.5) 
d = sin 8* cos 6 - R sin 6 

By Assertion 1, the point f3- O,$=O,cp= 0 of manifold (3.4) is unstable if expression 
(3.5) is negative. The sign of this expression is influenced, not only by the values of 
co9 (e* + 6) and cO~ e*, but also by the ratio of hl to hp. since, in accordance with (3.4), d 
changes sign depending on 6 and R/i. In particular/ d<O if 6> O,l, I> 0.6~. Then, (3.5) 
is negative if h, eos 6. co8 6 > h, tg 0.. We have stability of this equilibrium position for case* 70 
with a special choice of the coefficients of viscous friction of rolling and rotation 

L* = 
hl* (Cm-1 WXJ 6. + R1 sin* 0.) 

cos e* (h-1 - RI cos e* + IF) 

When there are no dissipative forces, the point is unstable, by Corollary 1 with cos@*+ 
6) c0S e* < 0. A knowledge of the structure of matrix a (n) and of the matrix of linearpositional 
forces enables this result to be refined; instability occurs when cos(0*+6)<0. 

4. Let us now examine the stability of equilibrium positions, in the neighbourhood of 
which the characteristic Eq.(2.5) has pure imaginary as well as zero roots. The structure of 
the equations of disturbed motion is then quite different from the structure in the cases 
studied above: the right-hand sides of the truncated /lo/ system now necessarily contain terms 
linear in the critical variables, while the vector of critical variables contains, inaddition 
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to the coordinates, at least part of the independent velocities. As a result, the problem 
cannot be reduced to a singular case by a replacement of Lyapunov type in the non-critical 
coordinates only, without a replacement in the corresponding velocities. The replacement 
has to be made with respect to the entire vector of non-critical variables, and this does not 
in general lead to vanishing of the non-linear terms in the equations of the constraints. 

Thus, remaining in the context of the theory of singular cases, we shall imposeconditions 
such that e.g., Kamenkov's theorems on stability in the essentially singular case (/ll/, Sect. 
39) hold directly in the initial variables. Notice that it is now impossible to satisfy such 
conditions by imposing conditions only on the matrix of coefficients in the equations of the 
constraints and on the generalized forces; we also need conditions on the matrixofcoefficients 
of the kinetic energy. 

Let us quote an example of an assertion about the stability of the equilibriumpositions 
of a non-holonomic system, in the neighbourhood of which Eq.(Z.S) has pure imaginary roots. 

Assertion 4. Let the following conditions hold: 
a) the matrix of coefficients of the kinetic energy is such that A,,, A,,, Azcaj vanish 

for cc = 0; 
b) the matrix of coefficients in the equations of the constraints does not contain any 

free variables /3, s, while Ba (q)= 0 for a = 0; 
c) resistance forces with complete dissipation act with respect to velocities a', while 

the matrix C,* f P, is symmetric and positive definite. 
Let one of the following requirements be satisfied: 
d) the potential forces contain no free coordinates $, s and only gyroscopic forces act 

with respect to the velocities @', while detQ,,>O, i.e., t is an even number; 
e) the potential forces contain no free coordinates s, while the coordinates fJ appear 

freely only in the linear forces with matrix c** + p,, while this matrix is symmetric and 
positive definite, and forces, linear in the velocities fi', arenotpresent;.then the equilibrium 
position (2.2) is asymptotically stable with respect to velocities a' and coordinates a, and 
is stable with respect to velocities p'and coordinates t% a under the action with respect 
to velocities a' of any gyroscopic linear forces and any non-linear forces which contain no 
free variables p,fi', s. 

The assertion follows from the stability theorem in the essentially singular case /ll/ 
of m+t zero and pure imaginary roots when condition d) holds, and of m zero and 2t pure 
imaginary roots when condition e) holds. In the former case, the non-holonomic system has, 
in addition to an (m $ t)-parametric manifold of equilibrium positions, a t-parametric 
manifold of periodic motions; in the latter case, it has an m-parametric manifoldofequilibrium 
positions and a 2t-parametric manifold of periodic motions. 

5. We formulate the problem of stabilizing the equilibrium positions of a non-holonomic 
system with constraints (1.1) by applying linear forces with respect to the coordinates p. 
Using our assertions about stability, we can prove the following concerning the possibilities 
of such stabilization. 

Assertion 5. Under the conditions a), b) of Assertion 3 and the action of only potential 
forces, the equilibrium position (2.2) can be stabilized up to asymptotic stability in the 
velocities and coordinates a,and stability in the remaining coordinates, by the application 
with respect to coordinates p of the control forces 

u = (--M, + Pa,) a - M,al - M,p 

In particular, if the matrix c, is positive definite, this stabilization is realized by 
the forces 

u = (-M,M, + P,,) a - M,a, - M,p (5.1) 

where MJ is any matrix with a positive-definite symmetric component, and the symmetric 
component of matrix yM, is positive definite as a result of the choice of matrix M,. 

Proof. Under these conditions and the action of forces (S-l), the system of equations 
of the disturbed motion (2.4) has the form 

U' = CC,, a*?~~ = -&a + y (P,, + M,) a +,vM,a~ + 7M1p + R 
tl’ = +‘a1 + b,‘p + N 
p’ = -(PSI + M,) cc - M,a, - Mlp + K 
z’ = Be”b,a,,a, + (&b,” + &i”bl”) p 

t(5.2) 

where the non-linear terms K, N, R vanish for p = 0, aI = 0, p = 0. 
After the non-singular linear replacement p = y - M,a, instead of (5.2) we obtain a 

system for which all the conditions of the Lyapunov-Malkin theory on stability in the singular 
case of m+t zero roots, corresponding to the variables fJ,z, are satisfied. 
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Example . Consider, in Routh variables, the problem of stabilizing the equilibrium 
position of Chaplygin's sledge on an inclined plane, under the action of gravity forces only. 
Disregarding the non-holonomic constraint and its equation, the Lagrange function is /17/ 

L = '!,m [(I' -1. 1rp' cos 'p)2 + (y' + @'sin cp)2 + /+'a1 - 
mg sin IS (y - 2 cos ‘p), y’ = I’ tg m 

Here, m is the mass of the sledge, 5.y are the Cartesian coordinates of the point of 
contact of the skate and the plane, cp is the angle between the line of intersection of the 
skate plane and the inclined plane and the z axis, 1 is the distance from the centre of mass 
to the axis perpendicular to the plane at the point of contact, k is the radius of inertia, 
g is the acceleration due to gravity, and 6 is the angle of iclination of the plane. 

We introduce the Routh variables a= cp. fl= z,p= i?Llk’. We study the stability of the 
point 

z = 0, y=o, cp=o (5.3) 
of the manifold sincp* = 0 of equilibrium positions. The characteristic equation of the first 
approximation system of equations of disturbed sledge motion 

Q =a,, m (ka i_ P) aI’ = - (mgl sin 6) Q - @' + R 
b’ = ---la, + m-‘p + N, p’ = - (mg sin 6)a + K 
y' = tg a (-zcc, + m-‘p) 

has five zero roots in the neighbourhood of the point (5.3). By Assertion 5, the force (5.1) 
(with P,, = mg sin 6). applied with respect to the z coordinate, stabilizes the point (5.3) up 
to asymptotic stability with respect to all velocities and the cp coordinate and up to 
stability with respect to z,y. 

REFERENCES 

1. ROUTH E.J., The Elementary Part of a Treatise on the Dynamics of a System of Rigid Bodies, 
Macmillan, London, 1882. 

2. RUMYANTSEV V.V., On the stability of the stationary motions of a satellite, VTs Akad.Nauk 
SSSR, MOSCOW, 1967. 

3. RUMYANTSEV V.V., On the control and stabilization of a system with cyclical coordinates, 
PMM, 36, 6, 1972. 

4. RUMYANTSEV V.V., On the influence of gyroscopic forces on the stability of stationary 
motion, PMM, 39, 6, 1975. 

5. KARAPETYAN A.V., On the stability of stationary motions, Studies of stability and 
stabilization of motion, VTs AkadNauk SSSR, Moscow, 1982. 

6. KARAPETYAN A.V., On the stability of the stationary motions of a system of a certain form, 
Izv. Akad. Nauk SSSR, MTT; 2, 1983. 

7. SAMSONOV V.A., On the possibility of stabilizing the steady-state motions of a system with 
pseudocyclical coordinates, PMM, 45, 3, 1981. 

8. KRASINSKAYA E.M., On stabilization of the stationary motions of a mechanical system, PMM, 
47, 2, 1983. 

9. LYAPUNOV A.M., Collected Papers, 2, Izd-vo Akad. Nauk SSSR, Moscow-Leningrad, 1956. 
10. MALKIN I.G., Theory of the Stability of Motion, Nauka, Moscow, 1967. 
11. KAMENKOV G.V., Selected Papers, 2, Nauka, Moscow, 1972. 
12. KARAPETYAN A.V. and RUMYANTSEV V.V., Stability of conservative and dissipative systems, 

Itogi nauki tekhniki, Ser. Obshchaya mekhanika, VINITI, Moscow, 1983. 
13. AISERMAN M.A. and GANTMACHER R.F., Stabilitgt der Gleichgewichtslage in einem nicht- 

holonomen System, ZAMM, 37, l/2, 1957. 
14. MERKIN D-R., Introduction to Theory of the Stability of Motion, Nauka, Moscow, 1976. 
15. SHUL'GIN M.F., On some differential equations of analytic mechanics and their 

interpretation, Tr. Sredneaz. Univ., 1958. 
16. KARAPETYAN A.V., Some problems of the stability of motion of non-holonomic sytems, Theory 

of Stability and its Applications, Nauka, Novosibirsk, 1979. 
17. NEIMARK YU.1. and FUFAYEV N.A., Dynamics of Non-Holonomic Systems, Nauka, Moscow, 1967. 

Translated by D.E.B. 


